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Growing urbanisation and imperviousness have augmented magnitudes of peak
flows, resulting in flooding especially during extreme events. Flood forecast of
extreme events can rely on real-time ensemble flood forecasting systems. Such sys-
tems often use predictions from physical models and precipitation ensembles to
predict downstream urban flood hydrographs. However, these methods are seldom
used in small catchments, where flood predictions may assist emergency manage-
ment. We explore the relative utility of two models, the Sacramento Model (SAC-
SMA) and an adaptive neuro-fuzzy inference system (ANFIS) for ensemble flood
prediction for nine small urban catchments located near New York City. The
models were used to reforecast streamflow for Hurricane Irene (160 mm) and a
35 mm storm across lead times from 3 to 24 hr. Differences in performance
between models were small for short (3 hr) lead times, and were similar for the
35 mm storm. Reforecasts of hurricane Irene at 24-hr lead times show strong per-
formance for SAC-SMA, but a decline in performance for ANFIS. Model perfor-
mance did not vary systematically with either catchment size or imperviousness.
Our results suggest that model selection is especially important when reforecasting
large rain events with longer lead times in small urban catchments.
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1 | INTRODUCTION

As a consequence of rapid urbanisation and increased sur-
face imperviousness, many urban watersheds worldwide are
threatened by greater frequency and depth of flooding
(Du et al., 2012; Liu, De Smedt, Hoffmann, & Pfister, 2005;
Nirupama & Simonovic, 2007; Qaiser, Yuan, & Lopez,
2012; Suriya & Mudgal, 2012; Wang & Yang, 2013; Zope,
Eldho, & Jothiprakash, 2015). Urban floods endanger human
lives, damage property, and initiate a cascade of environ-
mental and health impacts (Jha, Bloch, & Lamond, 2012;
World Bank, 2013). To mitigate this damage, emergency
management authorities may rely on real-time flood forecast
systems to provide sufficient lead time for evacuation and

asset protection in urban watersheds during extreme rainfall
events. However, developing these systems is complicated
by spatio-temporal variations and uncertainty in rainfall dis-
tributions alongside complex rainfall–runoff relationships.
As such, flood forecasting remains one of the most challeng-
ing tasks in hydrology (Chang, Chiang, & Chang, 2007).

Flood forecasting often requires two key decisions:
(a) how to treat and represent precipitation forecasts and
uncertainty in these forecasts, and (b) appropriate model
selection for best streamflow response simulation.
Recently, application of ensemble streamflow prediction
(ESP) systems for real-time flood forecasting have gained
popularity as an approach to represent the inherent uncer-
tainty associated with rainfall predictions for flood
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forecasts (Cloke & Pappenberger, 2009; Cloke, Wetterhall,
He, Freer, & Pappenberger, 2013; Day, 1985; Emerton et al.,
2016; Gouweleeuw, Thielen Del Pozo, Franchello, De
Roo, & Buizza, 2005). ESP systems use an ensemble of rain-
fall forecast scenarios to represent a range of future weather
assumptions. The rainfall forecast ensembles are used to gen-
erate a series of future flood hydrographs, also called spa-
ghetti hydrographs (Emerton et al., 2016). This procedure is
performed on a real-time basis using a flood forecast model
that is continuously calibrated up to the current time from his-
torical weather and streamflow observations. A great benefit
of an ESP approach over the traditional single-run determinis-
tic modelling approach is the generation of an ensemble of
predicted flood hydrographs that facilitate uncertainty ana-
lyses (Day, 1985). A spaghetti hydrograph can be used to
inform emergency managers about possible future flooding
scenarios and can guide strategies for evacuation and rescue.

Historically, local ESP systems have utilised a wide vari-
ety of physical models and numerical weather prediction
(NWP) data sources for simulating rainfall–runoff processes
during extreme events such as flash floods or hurricanes
(Liechti, Zappa, Fundel, & Germann, 2013). Overall, previ-
ous studies on ensemble flood prediction agree that this
approach is a great benefit over the traditional deterministic
modelling approach for relatively large river basins
(>100 km2) (Amengual, Homar, & Jaume, 2015; Hally
et al., 2015; Saleh, Ramaswamy, Georgas, Blumberg, &
Pullen, 2016). The effectiveness of the ensemble flood fore-
casting approach for relatively small urban catchments
(<100 km2) remains unclear due to the limited research at
this scale. Furthermore, nearly all ESP systems simulate
streamflow using physically based hydrologic models. While
physically based hydrologic models are useful tools for
flood forecasting, they also have large input requirements
(topography, land use, meteorological data, and soil charac-
teristics), many degrees of freedom, and are therefore subject
to the known problems of over-parameterisation and equifin-
ality (Beven, 2006).

Artificial intelligence (AI) models are an alternative
approach to physical models (Napolitano, See, Calvo,
Savi, & Heppenstall, 2010). AI models have reduced degrees
of freedom due to fewer parameters, and therefore may be at
lower risk for equifinality. However, AI models apply math-
ematical equations analysing concurrent input and output
time series rather than attempt to simulate physical processes
(Nourani, Hosseini Baghanam, Adamowski, & Kisi, 2014;
Solomatine & Ostfeld, 2008). Applications of AI models to
flood forecasting predictions have demonstrated their use for
forecasting flood stage and discharge for large river basins
(>204 km2) across Asia for forecast lead times ranging from
1 hr to 1 day (Campolo, Soldati, & Andreussi, 2003; Chang
et al., 2007; Nayak, Sudheer, Rangan, & Ramasastri, 2005;
Nguyen & Chua, 2012).

Despite advances in technique and availability of model
input data, there has been very limited focus regarding flood
forecasting in small urban catchments. Streamflow in small
urban catchments is flashier than in large catchments as
smaller catchment areas are more responsive to storm events
(Epstein, Kelso, & Baker, 2016; Walsh et al., 2005). This is
in part due to the closer match between the storm scale,
catchment time of concentration (Nicótina, Alessi Celegon,
Rinaldo, & Marani, 2008; Wilson, Valdes, & Rodriguez-
Iturbe, 1979), and catchment storage capacity (Sapriza-Azuri
et al., 2015). Given the short response times of small urban
catchments to extreme precipitation events, accurate estima-
tion of peak discharge and stage with a sufficient lead time
is perhaps even more critical than in large river basins.
Recently, a study of Japanese watershed response to the
Talas Typhoon by Yu, Nakakita, Kim, and Yamaguchi
(2016) demonstrated that predictions in smaller watersheds
are often more difficult than in large river basins. Prediction
of extreme events in small catchments is complicated by
uncertainties associated with often coarse spatial resolution
precipitation and land cover data sets compared to the size
of the catchment.

Across the literature, the many examples applying either
adaptive neuro-fuzzy inference system (ANFIS) or physi-
cally based models to flood forecasting analysis have all
focused on relatively large watersheds. We aim to provide
additional benchmarking for the application of ensemble-
based flood forecasting approaches for small watersheds,
one of the very first studies to do so. We compare the perfor-
mance of a purely data-driven model (ANFIS) alongside a
conceptual model (SAC-SMA) for ensemble flood predic-
tion at several small- to medium-sized suburban catchments
(17–150 km2) near New York City (NYC). To compare the
skill of these two models for real-time flood forecasting dur-
ing large- and small-scale storm events, we apply both
models to reforecast the flood hydrograph of a disastrous
historical extreme event, hurricane Irene, and another smal-
ler storm that occurred a few weeks after hurricane Irene.
This analysis is used to test the hypothesis that ANFIS per-
forms as accurately as SAC-SMA for ensemble flood fore-
casting for forecast lead times of three to 24 hr in relatively
small peri-urban catchments, which are newly developed
urban catchments in close proximity of large growing cities.
Further knowledge about the performance of conceptual and
data-driven models for flood forecasting in small urban
catchments can be valuable for local urban flood emergency
management in peri-urban catchments.

2 | METHODS

2.1 | Study site description

In August 2011, hurricane Irene caused several deaths and
severe property damage to the eastern coast of the United
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States. Property damage was approximated at about $1.5 bil-
lion in New York (http://www.fema.gov/ar/disaster/4020)
and $1 billion in New Jersey (Saleh et al., 2016). During
hurricane Irene, a total of between 150 and 250 mm of accu-
mulated precipitation occurred in a period of less than
2 days. Flood levels at most streams in proximity of NYC
exceeded the mean historical annual gaged peak flow. Emer-
gency management agencies evacuated about 1 million peo-
ple from the flood-prone regions to limit loss of life
(Watson, Collenburg, & Reiser, 2013). Nevertheless, several
deaths occurred in flooded areas during the event. In this
study, we simulated the flood hydrographs for nine peri-
urban catchments near NYC that were severely impacted by
hurricane Irene (Figure 1 and Table 1). Study catchment
drainage areas range from small (17 km2) to medium
(150 km2) sizes. These nine catchments are slightly to mod-
erately developed, with impervious area ranges from 12 to
25%. The soil in the study area consists of approximately
40% silt, 10% clay, and 50% sand and has a high runoff
potential (Falcone, 2011).

Subcatchment drainage areas in Table 1 were calculated
using the U.S. Geological Survey (USGS) StreamStats auto
delineation tool (http://water.usgs.gov/osw/streamstats/). The
mean historical annual gaged peak flow and the gaged peak

flow during hurricane Irene were obtained from the corre-
sponding USGS gages.

2.2 | Model descriptions and input data sets

2.2.1 | Model input data and simulation periods

Meteorological data including hourly precipitation and tem-
perature data were obtained from Phase 2 of the North
American Land Data Assimilation System (using the Hydro-
Desktop version 1.4 software (Ames et al., 2012). We focus
on model applications for two different events: (a) hurricane
Irene (160 mm, approximately 36 hr), and (b) a 35 mm
storm on September 23–25, 2011. We focus primarily on
these two storm events based on an extensive survey of all
storms between 2004 and 2011 contained within the Global
Ensemble Forecast System Reforecast (GEFS/R), one of the
most reliable sources for ensemble precipitation data for
reforecasting extreme events. Through this survey, we found
that the U.S. National Weather Service (NWS) performed
poorly for predicting the temporal distribution and the total
depth for most of the extreme events in that period for the
study sites. Although there is still a great uncertainty in pre-
cipitation ensembles for the two selected storm events, they
are two of the best predictions of NWS among other histori-
cal extreme events in GEFS/R database. The historical

FIGURE 1 Land cover map of the study catchments. Catchment ID numbers are arranged based on drainage area while Catchments 1 and 9 are the smallest
and largest study sites, respectively. Table 1 provides detailed information about the study catchments
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observed streamflow discharge records from October
1, 2004 to October 1, 2014 were obtained from the corre-
sponding USGS gages (Table 1). Observed meteorological
and discharge data from October 1, 2004 to August 27, 2011
were used for model calibration for hurricane Irene. Simi-
larly, observed data sets from October 1, 2004 to September
23, 2011 were used for model calibration for the 35 mm
storm event that occurred a few weeks after hurricane Irene.
The calibrated models were then validated for the following
3 years to ensure robustness. Finally, the GEFS/R precipita-
tion data inputs and the observed temperature and discharge
records for the events August 27–29, 2011 and September
23–25, 2011 were used to force the calibrated/validated
models for ensemble stream flow prediction.

2.2.2 | Model selection

To find the most suitable model for this study, we tested sev-
eral models, including Hydrological Simulation Program
Fortran (HSPF), the Storm Water Management Model
(SWMM), and SAC-SMA (unpublished results). Ultimately,
we selected SAC-SMA, given its wide use in the literature
(Ajami, Gupta, Wagener, & Sorooshian, 2004; Burnash, Fer-
ral, McGuire, & McGuire, 1973; Foehn, Hernandez, Roqu-
ier, & Arquiola, 2016) and its use by the NWS for flood
forecasting.

SAC-SMA model

SAC-SMA is a conceptual watershed model that distributes
humidity within the soil profile to accurately simulate
streamflow (Burnash et al., 1973; Foehn et al., 2016). The
Hydrology Laboratory of National Oceanic and Atmospheric
Administration's NWS selected the SAC-SMA lumped
model as a comparison baseline for participating distributed
hydrologic models in the distributed model intercomparison
project, which aimed to identify the most suitable model for
NWS streamflow prediction across the U.S. (Smith et al.,
2004). More importantly, the NWS currently uses the
lumped form of SAC-SMA for U.S. wide ensemble flood
forecasting (Emerton et al., 2016). For these reasons, we
chose to employ a lumped version of SAC-SMA in this
study.

SAC-SMA was calibrated using the multistep automatic
calibration scheme (Hogue, Sorooshian, Gupta, Holz, &
Braatz, 2000). We note that, to the best of our knowledge,
NWS does not use automatic calibration. We have auto-
mated the calibration process for our study sites as manual
calibration relies highly on expert knowledge. As the best
temporal resolution of available GEFS/R precipitation fore-
casts is 3 hr, all models were calibrated in three-hourly time
steps. We recognise that performance would likely improve
if we used a smaller time step; however, we sought to treat
this as a real-world exercise, preserving the time step of the
input data. In this procedure, all SAC-SMA model parame-
ters were initially calibrated to minimise the root-mean-
squared error (RMSE) of log-transformed streamflow
observations and predictions. The upper zone parameters
were then adjusted using the RMSE of the untransformed
streamflow data while the lower zone parameter values
remain fixed from the previous calibration. Finally, the
lower zone parameters were readjusted using the RMSE of
the log-transformed data while upper zone parameter values
remained fixed from the previous step. For the validation
period associated with hurricane Irene (August 27–29, 2011)
and the 35 mm storm (September 23–25, 2011), we used a
data-assimilation approach to account for current discharge
observations. With this approach, the SAC-SMA model
input parameters were allowed to vary between 10% below
and above their calibrated values. This approach was shown
to slightly improve the accuracy of the flood forecasting
model by recalibrating the model based on the real-time dis-
charge observations. This also allowed the model flexibility
to capture current conditions.

ANFIS model

ANFIS is a data-driven model framework that combines the
human logic of fuzzy inference systems (FISs) with the
adaptive capability of training artificial neural networks
(ANNs) (Jang & Sun, 1995). FIS is the theory of solving
fuzzy processes (Zadeh, 1965) that are controlled by unclear,
uncertain, or incomplete information using several if-then
statements and numerical methods called membership func-
tions. Membership functions define the degree of truth of

TABLE 1 Characteristics of the study sites in proximity of NYC

Catchment ID Subcatchment name
USGS gage
number

Area
(km2)

Imperviousness
(%)

Mean historical
annual gaged
peak flow (m3/s)

Gaged peak flow
during Hurricane
Irene (m3/s)

1 Big Brook near Marlboro, NJ 01407290 17 12 23 38

2 Peckman River at Little Falls, NJ 01389550 20 19 33 57

3 Pascack Brook at Park Ridge, NJ 01377370 35 20 66 99

4 Pascack Brook at Westwood, NJ 01377500 77 17 32 131

5 Hackensack River at West Nyack, NY 01376800 80 12 21 49

6 Lawrence Brook at Westons Mills, NJ 01405030 116 20 64 218

7 Bound Brook at Middlesex, NJ 01403900 125 25 75 166

8 Saddle River at Lodi, NJ 01391500 141 17 52 151

9 Hackensack River at Rivervale, NJ 01377000 150 13 32 132
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each fuzzy statement using a value of between 0 and
1. While, ANN's training module can be used to create
appropriate membership functions and if-then rules to
approximate an output data set, the FIS structure is unable to
dynamically adjust with the environmental change in data
sets. To overcome this shortcoming, the learning capability
of ANN was added to ANFIS.

AI models are typically trained using the input variables
that have the highest Pearson correlation coefficient with the
outputs (Sudheer, Gosain, & Ramasastri, 2002). For hydro-
logic modelling, AI model input variables typically include
the antecedent observed discharge and accumulated precipita-
tion for lead times with the highest Pearson correlation coeffi-
cient. In this study, we trained ANFIS using the antecedent
observed discharge N hours before present (Qt-N; N = forecast
lead time) and the 3- and 6-hr accumulated precipitation. This
selection was based on the observation of greatest Pearson
correlation coefficient values between the current discharge at
each time step (Qt) and the antecedent precipitation and dis-
charge inputs (Qt-N). An important benefit of the three-
parameter ANFIS model compared to the multiparameter
SAC-SMA model used in this study is the smaller number of
input parameters that decreases the calibration time, the num-
ber of uncertainty sources, and the risk of equifinality (Beven,
2006) associated with model calibration. Furthermore, the
training process of ANFIS can be automated and does not
necessarily require expert knowledge, a key difference when
calibrating a conceptual model like SAC-SMA. However,
because the ANFIS model is dependent on antecedent
observed discharge (Qt-N) and forecast lead time, the model
must be calibrated and validated for each lead time.

2.3 | Real-time flood forecasting system

We implemented a real-time ensemble flood forecasting
approach (Figure S1, Supporting Information) to reforecast
the flood discharge at nine USGS gages (Table 1) located at
the outlet of the study sites for hurricane Irene and a storm
event that occurred a few weeks after hurricane Irene

(September 23–25, 2011). Eleven ensemble members of the
GEFS/R precipitation (10 members + 1 control member)
with a temporal resolution of 3 hr were used to force the cal-
ibrated models to forecast streamflow during these two
events. As the available GEFS/R precipitation data are pro-
duced only once daily at 00 Universal Time Coordinated, a
meteorological and discharge data updating component was
added to the system to update the precipitation and stream-
flow discharge inputs for subdaily forecasts. Figure A2
shows an example of the precipitation updating mechanism.
This updating component corrected the initial conditions of
the predictor model (for SAC-SMA or ANFIS) for subdaily
predictions based on the most recent meteorological and
streamflow observations within the forecast system. For
SAC-SMA, a data-assimilation technique was used to update
model parameters based on discharge observations. In this
approach (as noted in Section 2.2.2), SAC-SMA was recali-
brated at each update by allowing parameters to vary
between 10% below and above the original parameter values
to account for uncertainty in these estimates as well as to
enable real-time assimilation of observations, leading to
improved agreement between modelled and observed dis-
charge. Finally, the performance of the forecast models was
assessed using the indices described in Table 2.

3 | RESULTS

3.1 | Calibration/validation

Across all catchments, both three-hourly models performed
reasonably well in the calibration (2004–2011) and valida-
tion (2011–2014) periods with Nash–Sutcliffe efficiency
(NSE) values ranging from 0.72 to 0.87 (Table 3). Relative
Bias (RelBIAS) values, SAC-SMA calibration data sets, and
calibration hydrographs are presented for individual water-
sheds in Supporting Information/Appendix (Tables A1 and
A2, and Figure A3). Values presented in Table 3 represent
average performance across the 11 forecast ensemble mem-
bers for all study sites. Calibration and validation

TABLE 2 Statistical indices used to assess model performance

Index title Formula Min Max Best

Nash–Sutcliffe efficiency (NSE)

1−

Pn
i¼1 Qo

i −Qf
i

� �2

Pn
i¼1 Qo

i −Q
o
i

� �2
−∞ 1 1

Percent BIAS (PBIAS)
100 ×

Pn
i¼1 Qf

i −Q0
i

� �
Pn

i¼1Q
0
i

− ∞ + ∞ + ∞ 0

Relative bias (RelBIAS) Pn

i¼1

Qf
i
−Qo

i
Qo
i

� �

n

− ∞ + ∞ + ∞ 0

Relative mean squared error (RelMSE) Pn
i¼1

Qf
i −Qo

i
Qo
i

� �2

n

0 +∞ 0

Average relative absolute difference (ARAD) Pn
i¼1

Qf
i −Qo

i
Qo
i

���
���

n

0 +∞ 0

Note. With and Qo
i are the ith forecasted and observed discharge, respectively; and Q

o
i is the average of all observed discharge values.
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performance indices for ANFIS decreased with forecast lead
time for both events. This was consistent with the observed
decrease in the statistical correlation between Qt-lead time
and Qt. Similarly, RelBIAS of the ANFIS model over the cal-
ibration period for hurricane Irene increased from 0.08 to
0.15 when forecast lead time increased from 3 to 24 hr. For
SAC-SMA, the most (7) and least (1) impervious study sites
had the smallest and greatest RelBIAS values, respectively.
However, we did not find any trends between performance
indices (including RelBIAS) and either catchment impervi-
ousness or drainage area. For ANFIS, performance indices
varied within the sites and with lead time. For example, Sites
3 and 8 for the 3-hr lead time, and Sites 4 and 1 for the 24-hr
lead time, had the smallest and greatest RelBIAS values for
the calibration period, respectively.

3.2 | Performance during extreme events

For simulated real-time flood forecasting, agreement
between the observed and simulated hydrographs varied
most between models for forecasts of hurricane Irene; this
makes sense given this extremely rare event. Forecasts are
included both ANFIS and SAC-SMA for hurricane Irene
(Figure 2a) and a smaller storm (September 23–25;
Figure 2b) for a single watershed (Site 7), as patterns were
similar across study sites. Observed and ensemble forecasted
flood hydrographs for the smallest and largest study sites
(Sites 1 and 9) and minimum, average, and maximum
RelBIAS among the 11 forecasted ensemble members for
individual catchments are presented in Supporting Informa-
tion (Figure A2, Tables A2 and A3).

ANFIS-simulated real-time forecasted hydrographs for
hurricane Irene were best for the smallest lead times, with
increasing disagreement as lead times approached 24 hr
(Figure 2a). Performance, in terms of average NSE, for
ANFIS forecasts of hurricane Irene declined (from 0.85 to
0.4) for increasing forecast lead times (from 3 to 24 hr;
Figure 3). ANFIS largely underpredicted the hurricane Irene

peak flow for forecast lead times of 24 hr (Figure 2a). Corre-
spondingly, average RelBIAS values for ANFIS for 24-hr
lead time for hurricane Irene ranged from −0.45 to −1.1
(Table A3). ANFIS performed well when simulating the
flood hydrograph for a small storm (September 23–25) for
all lead times (Figure 2b; Table A3). While the ANFIS
model failed to match the peak when applied to simulate
hurricane Irene at the longest lead times (Figure 2a), the
ANFIS model performed reasonably well for the smaller
storm event, bracketing streamflow observations.

In contrast to ANFIS simulations, SAC-SMA performed
reasonably well when simulating event hydrographs for both
storms. Average RelBIAS values ranged from −0.2 to 0.48
(Table A4), and NSE values ranged from 0.65 to 0.9
(Figure 3). As can be seen in Figure 3, SAC-SMA forecasts
for ensemble members tended to bracket observations
regardless of lead time. At the longest lead times, SAC-
SMA overpredicted peak discharge for both hurricane Irene
responses as well as discharge for the smaller event. This
overprediction decreased as lead times decreased.

Finally, we sought to test whether catchment size or fore-
cast lead time had a greater impact on model performance.
While we observed that NSE was highest for short lead
times for both models, we somewhat surprisingly found that
for some watersheds, NSE increased as lead times changed
from 9 to 24 hr (Figure 3). For example, NSE values for
ANFIS for Catchment 5 increased from 0.28 to 0.36 when
forecast lead time increased from 9 to 24 hr (Figure 3). Simi-
larly, NSE value for SAC-SMA for Site 3 slightly increased
between 9- and 24-hr lead times (Figure 3).

We found performance indices (RelBIAS, RelMSE, and
ARAD) across models were insensitive to catchment size and
imperviousness, but varied with forecast lead time (Figure 4;
Figures A4 and A5). While performance indices for both
models varied in a similar narrow range for forecast lead
times of 3–9 hr, we found performance diverged between
models as lead times approached 24 hr. In particular,

TABLE 3 Averaged performance indices for the nine study sites over the calibration (October 1, 2004–August 27, 2011 for Hurricane Irene and October
1, 2004–September 23, 2011 for the small event) and validation (August 27, 2011–August 27, 2014 for Hurricane Irene and September 23, 2011–September
23, 2014 for the small event) periods

Storm event Index

SAC-SMA ANFIS

Calibration Validation

Calibration Validation

3 hr 6 hr 9 hr 24 hr 3 hr 6 hr 9 hr 24 hr

Hurricane Irene (August 27–29, 2011) NSE 0.83 0.81 0.87 0.84 0.79 0.73 0.86 0.81 0.75 0.72

PBIAS (%) 6.13 5.19 5.67 6.50 8.23 10.54 4.35 6.56 8.29 11.89

RelBIAS 0.11 0.08 0.08 0.11 0.13 0.15 0.09 0.11 0.12 0.14

RelMSE 0.15 0.11 0.19 0.22 0.27 0.34 0.18 0.25 0.37 0.45

ARAD 0.14 0.13 0.17 0.23 0.29 0.36 0.19 0.25 0.39 0.48

Small event (September 23–25, 2011) NSE 0.85 0.84 0.86 0.83 0.81 0.76 0.84 0.81 0.77 0.73

PBIAS (%) 6.21 6.56 4.32 5.76 6.39 8.31 7.12 7.87 8.24 9.16

RelBIAS 0.09 0.08 0.07 0.09 0.10 0.12 0.08 0.09 0.11 0.12

RelMSE 0.18 0.19 0.15 0.19 0.27 0.39 0.16 0.22 0.35 0.46

ARAD 0.12 0.15 0.13 0.26 0.38 0.45 0.15 0.19 0.24 0.36
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performance remained high for SAC-SMA, but declined for
ANFIS simulations with 24-hr lead times (as compared to
3-, 6-, or 9-hr lead times) regardless of catchment size. The
only trend we observed with watershed size was with respect
to SAC-SMA forecasts for longer lead times. For lead times
of both 9 and 24 hr, performance tended to improve with
watershed size (closer to 0) for ARAD; this was not true for
other performance indices. We found comparable results for
ANFIS and SAC-SMA for short lead times when forecasting

the smaller event (Figure A5, Supporting Information).
However, for the longest forecast lead times for the smaller
event, ANFIS outperformed SAC-SMA, with slightly lower
values of performance indices regardless of watershed size.

4 | DISCUSSION

4.1 | Model performance and uncertainty outside of
extreme event forecasts

Both SAC-SMA and ANFIS models performed reasonably
well during calibration and validation periods with NSE
values greater than 0.7. Deterministic flood forecasting
applications of the SAC-SMA model in previous studies
over a wide range of catchment scales and climate condi-
tions have shown both similar and different performance
results compared to our ensemble-based approach findings.
For example, Ajami et al. (2004) and Reed, Schaake, and
Zhang (2007) used a spatially distributed SAC-SMA model
for streamflow forecasting in large U.S. river basins and
achieved NSE and RelBias values similar to our findings
(Table 3). Others have found larger biases than we observed
(e.g., Khakbaz, Imam, Hsu, & Sorooshian, 2009). Taken
together, these studies indicate that our model performance
is comparable to other study applications of the SAC-SMA
model in deterministic streamflow prediction.

FIGURE 3 Model errors shown as NSE coefficient for SAC-SMA and
ANFIS across the nine study catchments applied to simulate hurricane Irene
flood hydrographs. Numbers on the graph represents study site IDs
(Column 1 in Table 1) ordered by increasing drainage area
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To enable a real-world simulation of model forecasting,
we did not investigate or compare the relative impacts of
sources of uncertainty in this study, instead calibrating SAC-
SMA following procedures used by the NWS. However, we
recognise that different sources of uncertainty with respect
to model parameters and input data ultimately shape results
with respect to both models. We do note that the greater
number of input parameters for SAC-SMA (17 parameters)
as compared to ANFIS (three parameters) does increase
potential sources of uncertainty and the risk of equifinality
(Beven, 2006), initially a motivating factor for comparing
these two models. For the ANFIS model, the main sources
of uncertainty are intrinsic to the measured precipitation and
discharge values used for the model calibration, uncertainty
due to the length of calibration period and the presence of
events similar to the validation storm event, and the uncer-
tainties of GEFS/R precipitation ensembles for the validation
period, which we discuss as further sources of discrepancy
between ANFIS and SAC-SMA performance. During the
real-time forecasting, we posit that the most important
sources of uncertainty in streamflow forecasts for both
models are associated with the uncertainties of GEFS/R pre-
cipitation ensembles. Within this study, we only focus on
two events, as we found in a survey of the GEFS/R database
(2004–2011) that there are few extreme events for which
NWS relatively accurately predicted the precipitation inten-
sity and total depth at least 24 hr before the event start time.

We note that other studies have also found high sensitivity
of real-time flood forecasting models to the predicted precip-
itation inputs (Amengual et al., 2015; Liechti et al., 2013;
Marty, Zin, & Obled, 2013; Saleh et al., 2016), hence the
need to perform this type of study, and our constraints on
the events we simulate. While a shorter time step would
likely yield better results, our goal was to perform an analy-
sis as similar to real-time flood forecasting as possible,
namely, the three-hourly time step corresponding to GEFS/R
input data. This study highlights the need for more resolute
precipitation ensembles, as floods were only forecasted well
for the smallest watersheds at very close lead times. Whereas
we compared only two models within this analysis, we addi-
tionally tested other models while developing this study,
including the HSPF and the SWMM (results not published).
Ultimately, urban hydrologic modelling would strongly ben-
efit from an intercomparison project (Best et al., 2015;
Kollet et al., 2017; Smith et al., 2004) to examine the utility
of hydrologic models for average and extreme conditions,
given these areas are especially challenging to simulate
(e.g., Yu et al., 2016).

4.2 | How does model performance vary with
lead time?

The presented study evaluates the performance of a lumped
conceptual model (SAC-SMA) and an AI model (ANFIS)
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through a real-time ensemble flood forecasting approach.
Our results suggest that the forecast performance of both
models decreases with forecast lead time, which is in agree-
ment with results of previous findings (Campolo et al.,
2003; Nayak et al., 2005; Saleh et al., 2016). For short lead
times (3 and 6 hr), precipitation input data updates likely
resulted in smaller errors and uncertainties with respect to
GEFS/R precipitation data inputs. In contrast, forecasts at
greater lead times had poorer performance, likely due to the
relatively short time of concentration (1–6 hr) in the study
catchments. We note that accurate flood forecasting for short
lead times can still be valuable for emergency evacuation
warning in small urban catchments in contrast to large river
basins.

Surprisingly, NSE values of models for some catchments
increased slightly as lead times increased to 9 and 24 hr
(Figure 3). This may be related to the underlying processes
of the updating system or uncertainties of the GEFS/R pre-
cipitation inputs for 24-hr lead time due to variability in rain-
fall predictions. For these long lead times, SAC-SMA
generally overestimated peak flow magnitudes as the
GEFS/R precipitation data for both hurricane Irene and the
smaller precipitation event were slightly greater than the
observed precipitation amounts (Figure 2). Note that this
overprediction of peak flow magnitude is not necessarily
detrimental, as it still correctly reports the major flood condi-
tion status in the catchment and may still be useful for emer-
gency management.

4.3 | Comparing ANFIS to SAC-SMA for extreme
event forecasts

While forecast performance for ANFIS and SAC-SMA was
similar for shorter lead times, performance diverged as lead
times increased to 9 and 24 hr (Figure 4). At lead times of
24 hr, SAC-SMA outperformed ANFIS with respect to all
indices. ANFIS underestimated peak flow magnitude of hur-
ricane Irene for lead times greater than 3 hr. Thus, we expect
ANFIS is more reliable for flood forecasting with short lead
times (Figure 4).

An important consideration related to the performance of
both SAC-SMA and ANFIS for hurricane Irene is likely the
dearth of large storm events or hurricanes in the training
period (2004–2011). Due to the learning nature of the
ANFIS model, these types of models can only provide accu-
rate predictions if the training period includes storms of
magnitude equal to or greater than storms in the validation
period. The performance of SAC-SMA could improve if the
training period includes a large hurricane due to the
improvements in high flow calibration. Unfortunately, con-
tinuous streamflow discharge data for the study sites were
only available for a limited period (2004–2011) during
which no other storms as large as hurricane Irene occurred,
and represents a real-world scenario where data in small
catchments, including streamflow, may be limited.

Performance might improve for future events at these sites
as ANFIS would now have hurricane Irene data to train the
model. The lack of floods in the training data set is a com-
mon shortcoming in hydrologic modelling of extremes; our
results demonstrate that we need better methods for simulat-
ing extreme events and that starts with exploring to what
extent these issues may impact our approaches and out-
comes. This also highlights the importance of ongoing
streamflow discharge monitoring in small urban catchments,
especially for extreme events, for more accurate future flood
forecasting.

Poor performance of ANFIS for long lead times was
likely also due to weak statistical correlations between the
antecedent discharge (Qt-lead time) and the observed discharge
at each time step (Qt) for the relatively short times of con-
centration in the study catchments (1–6 hr). We inferred that
antecedent discharge is not an effective input parameter for
ANFIS for real-time flood forecasting in small urban catch-
ments with lead times greater than 3 hr. In this case, we sug-
gest using any other possible meteorological and
hydrological input parameters to increase the predictability
performance of the data-driven real-time flood forecasting
model. In contrast to our finding, previous studies have
found good predictability performance of AI models for
large river basins with long times of concentration (Campolo
et al., 2003; Nayak et al., 2005; Nguyen & Chua, 2012;
Rezaeianzadeh, Tabari, Arabi Yazdi, Isik, & Kalin, 2014).
As there has been very limited focus on applying data-driven
models for real-time flood forecasting in relatively small
urban catchments in the previous literature, our study is one
of the first to show potential trade-offs in model frameworks
for real-time flood forecasting.

We note that forecast performance was similar for
ANFIS and SAC-SMA for the smaller storm (Figure A3). In
this case, we found ANFIS outperformed SAC-SMA for
long lead times. This suggests that both models can be reli-
able options for real-time flood forecasting in small urban
catchments for predicting small storm events, and that
ANFIS should have improved performance as more training
data from large precipitation events becomes available for
model training.

The model performance indices for the nine study catch-
ments with drainage areas ranging from 17 to 150 km2 and
fractional impervious areas ranging from 12 to 25% lead us
to conclude that the accuracy of both SAC-SMA and ANFIS
models for ensemble flood prediction may not change with
catchment size and imperviousness (Figure 4; Figures A4
and A5). We did not find a strong statistical correlation
between model performance indices and catchment drainage
area or fractional impervious area (Figure 4; Figures A4 and
A5). However, the scope of our study has a limited climatic
and spatial extent, and we caution that relationships between
catchment size and imperviousness may differ for other
areas. While we primarily contextualise our results with
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drainage area and imperviousness, we recognise that several
other physical properties of urban catchments affect flood
response, including soil types, vegetation, sewer systems
type and location, road network geometry, and catchment
shape. In particular, there is growing evidence that urban soil
is incredibly heterogeneous and poorly characterised
(Herrmann, Shuster, & Garmestani, 2017). Urban sewer and
storm water collection systems can also affect the flood
response of urban watersheds by subsurface flow routing
(Miller et al., 2014; Roodsari & Chandler, 2017). Due to the
limited number of catchments in this study, future work
would benefit from the application of SAC-SMA and
ANFIS models for real-time flood forecasting in a greater
number of small suburban catchments with a wide range of
fractional impervious areas, drainage patterns, and across cli-
matic regions to assess the sensitivity of model performance
indices to different catchment characteristics.

5 | CONCLUSION

In this study, we applied a lumped conceptual model, SAC-
SMA, and one of the most widely used data-driven models
in hydrologic forecasting, ANFIS, to reforecast streamflow
discharge at several small to medium size peri-urban catch-
ments of NYC during hurricane Irene and another storm
event. Comparison of various statistical performance indices
for SAC-SMA and ANFIS indicated that SAC-SMA can
perform reasonably well for flood prediction in relatively
small urban catchments (drainage area < 150 km2) with
NSE values mostly greater than 0.75. In contrast, ANFIS
largely underpredicted the rising limb and the peak flow of
hurricane Irene flood hydrographs, especially for lead times
greater than 3 hr, but performed well when forecasting a
smaller storm event. We infer that the poor performance of
ANFIS for hurricane Irene is likely due to the absence of
similarly large storms included in the training period. Poor
quality precipitation data remain one of the challenges in
real-time flood forecasting, necessitating advances in higher
spatial and temporal NWPs to improve forecasting in small
urban catchments where emergency notification is needed.

Our work also suggests that the flood forecasting perfor-
mance of the lumped SAC-SMA and ANFIS models may
not depend on the catchment scale and impervious area for
relatively small urban catchments. Quantitative performance
parameters (RelBIAS, RelMSE, and ARAD) for both models
varied in a relatively similar range for the nine study sites
with drainage areas ranging from 17 to 150 km2 and fraction
of impervious areas ranging from 12 to 25%. However, we
suggest examining these models for real-time flood predic-
tion systems in a greater number of small to medium-sized
catchments with a wide range of imperviousness, drainage
patterns, and climate to study the model's sensitivity to dif-
ferent characteristics of the catchments and their perfor-
mance under varying conditions. We posit that model

selection can significantly impact the accuracy of flood pre-
dictions due to the complexity of land cover and hydrology
in these areas. For this study, we initially tested HSPF,
SWMM, SAC-SMA, and finally selected SAC-SMA for
analysis due to a better accuracy and its wider historical
application in practical flood forecasting systems.

Despite better performance of SAC-SMA compared to
ANFIS for predicting the flood hydrograph of hurricane
Irene in the nine study catchments, the use of AI models
shows some promise as an alternative to physical or concep-
tual models in local urban flood forecasting systems if a long
training period with a wide range of storm scales are avail-
able for the site. Indeed, we demonstrate for short forecast
lead times that performance of ANFIS forecasts was compa-
rable to SAC-SMA forecasts, despite the large increase in
degrees of freedom associated with the large number of
model parameters associated with SAC-SMA. However, we
also emphasise the importance of applying physical or con-
ceptual models for the real-time flood forecasting systems
due to uncertain future climatic conditions and potential
changing physical characteristics of a watershed. The
streamflow hydrograph for the future extreme events may
not be accurately predicted by AI models as AI models are
learning algorithms that are highly dependent on the past
memory. One solution for improving flood forecasting per-
formance may be to apply stochastic hydrology approaches
(e.g., Vogel, 2017). Although stochastic approaches are typi-
cally applied to deterministic hydrologic simulations (Vogel,
2017) they may be applied for real-time flood forecasting by
combining precipitation with stochastically generated precip-
itation ensembles from the historical data with actual NWPs
for the extreme event. Overall, our study demonstrates accu-
rate flood forecasting in small watersheds requires long con-
tinuous periods of streamflow discharge monitoring and
higher temporal resolution of predicted precipitation inputs.
More importantly, increased data density and flood hydro-
graphs of extreme events in small catchments are needed to
benchmark and improve the predictability of real-time flood
forecasting models.
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